BILANGAN
Sejarah Bilangan
Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks. Banyak yang tidak menduga bahwa nol sebenarnya sangat berbahaya dan dapat menjadi bom penghancur yang sangat dahsyat. Sebagai buktinya adalah kisah nyata yang terjadi pada tanggal 21 September 1997.
Kapal perang USS Yorktown ketika sedang menyusuri lepas pantai Virginia, kapal peluncur misil berharga jutaan dolar amerika itu tiba-tiba macet dan menimbulkan kecemasan bagi semua awak kapal. Ketika sistem komputasi Yorktown baru saja mengoperasikan sebuah software baru pengatur kerja mesin, angka nol yang seharusnya dihilangkan, terlewatkan dan tersembunyi hingga akhirnya software tersebut mengaktifkan dan menguncinya. Mesin yang berkekuatan 80.000 tenaga kuda tersebut tak dapat berfungsi. Kapal tidak bergerak hampir tiga jam. Akibat kejadian ini, para teknisi membutuhkan waktu dua hari untuk menghapus angka nol dan Yorktown dapat beroperasi kembali.
Prosedur-prosedur tertentu yang mengambil bilangan sebagai masukan dan menghasilkan bilangan lainnya sebagai keluaran, disebut sebagai operasi numeris. Operasi numeris mengambil satu masukan bilangan dan menghasilkan satu keluaran bilangan. Operasi yang lebih umumnya ditemukan adalah operasi biner, yang mengambil dua bilangan sebagai masukan dan menghasilkan satu bilangan sebagai keluaran. Contoh operasi biner adalah penjumlahan, pengurangan, perkalian, pembagian, perpangkatan, dan perakaran. Bidang matematika yang mengkaji operasi numeris disebut sebagai aritmetika.
Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya setelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya.
Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama.
Sejarah menunjukkan bahwa permulaan Matematika berasal dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim. Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki. Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.
Bilangan dahulunya digunakan sebagai simbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk menggambarkan bilangan dalam bentuk simbol diantaranya :
Simbol bilangan bangsa Babilonia.
Simbol bilangan bangsa Maya di Amerika pada 500 tahun SM.
Simbol bilangan menggunakan huruf Hieroglif yang dibuat bangsa Mesir Kuno.
Simbol bilangan bangsa Arab yang dibuat pada abad ke-11 dan dipakai hingga kini oleh umat Islam di seluruh dunia.
Simbol bilangan bangsa Yunani Kuno.
Simbol bilangan bangsa Romawi yang juga masih dipakai hingga kini.
Sejarah Perkembangan Teori Bilangan
Teori Bilangan pada Masa Prasejarah (Sebelum Masehi)
Konsep bilangan dan proses berhitung berkembang dari zaman sebelum ada sejarah (artinya tidak tercatat sejarah kapan dimulainya).
Mungkin bisa diperdebatkan, tapi diyakini sejak zaman paling primitif pun manusia memiliki “rasa” terhadap apa yang dinamakan bilangan, setidaknya untuk mengenali mana yang “lebih banyak” atau mana yang “lebih sedikit” terhadap berbagai benda.
Hal ini dibuktikan dengan ditemukannya benda matematika tertua, yaitu tulang Lebombo di pegunungan Lebombo di Swaziland dan mungkin berasal dari tahun 35.000 SM. Tulang ini berisi 29 torehan yang berbeda yang sengaja digoreskan pada tulang fibula baboon. Terdapat bukti bahwa kaum perempuan biasa menghitung untuk mengingat siklus haid mereka; 28 sampai 30 goresan pada tulang atau batu, diikuti dengan tanda yang berbeda. Selain itu, ditemukan juga artefak prasejarah di Afrika dan Perancis, dari tahun 35.000 SM dan berumur 20.000 tahun, yang menunjukkan upaya dini untuk menghitung waktu. Tulang Ishango, ditemukan di dekat batang air Sungai Nil (timur laut Kongo), berisi sederetan tanda lidi yang digoreskan di tiga lajur memanjang pada tulang itu. Tafsiran umum adalah bahwa tulang Ishango menunjukkan peragaan terkuno yang sudah diketahui tentang barisan bilangan prima.
Teori Bilangan pada Suku Bangsa Babilonia
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai "Matematika Babilonia" karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal.
Sistem Numerasi Babylonia (±2000 SM), pertama kali orang yang mengenal bilangan 0 (nol) adalah Babylonian.
Teori Bilangan pada Suku Bangsa Mesir Kuno
Matematika Mesir merujuk pada matematika yang ditulis di dalam bahasa Mesir. Sejak peradaban helenistik matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan Matematika helenistik. Pengkajian matematika di Mesir berlanjut di bawah Khilafah Islam sebagai bagian dari matematika Islam, ketika bahasa Arab menjadi bahasa tertulis bagi kaum terpelajar Mesir.
Tulisan matematika Mesir yang paling panjang adalah Lembaran Rhind (kadang-kadang disebut juga "Lembaran Ahmes" berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari Kerajaan Tengah yaitu dari tahun 2000-1800 SM. Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, pembagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya, termasuk bilangan komposit dan prima; rata-rata aritmetika, geometri, dan harmonik; dan pemahaman sederhana Saringan Eratosthenes dan teori bilangan sempurna (yaitu, bilangan 6). Lembaran itu juga berisi cara menyelesaikan persamaan linear orde satu juga barisan aritmetika dan geometri.
Naskah matematika Mesir penting lainnya adalah lembaran Moskwa, juga dari zaman Kerajaan Pertengahan, bertarikh kira-kira 1890 SM. Naskah ini berisikan soal kata atau soal cerita, yang barangkali ditujukan sebagai hiburan.
Sistem Numerasi Mesir Kuno (±3000 SM) bersifat aditif, dimana nilai suatu bilangan merupakan hasil penjumlahan nilai-nilai lambang-lambangnya.
Lambang dan simbol bilangan Mesir
Teori Bilangan pada Suku Bangsa India
Sulba Sutras (kira-kira 800-500 SM) merupakan tulisan-tulisan geometri yang menggunakan bilangan irasional, bilangan prima, aturan tiga dan akar kubik; menghitung akar kuadrat dari 2 sampai sebagian dari seratus ribuan; memberikan metode konstruksi lingkaran yang luasnya menghampiri persegi yang diberikan, menyelesaikan persamaan linear dan kuadrat; mengembangkan tripel Pythagoras secara aljabar, dan memberikan pernyataan dan bukti numerik untuk teorema Pythagoras.
Panini (kira-kira abad ke-5 SM) yang merumuskan aturan-aturan tata bahasa Sanskerta menggunakan notasi yang sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, transformasi, dan rekursi. Pingala (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalah prosodynya menggunakan alat yang bersesuaian dengan sistem bilangan biner. Pembahasannya tentang kombinatorika bersesuaian dengan versi dasar dari teorema binomial. Karya Pingala juga berisi gagasan dasar tentang bilangan Fibonacci.
Pada sekitar abad ke 6 SM, kelompok Pythagoras mengembangkan sifat-sifat bilangan lengkap (perfect number), bilangan bersekawan (amicable number), bilangan prima (prime number), bilangan segitiga (triangular number), bilangan bujur sangkar (square number), bilangan segilima (pentagonal number) serta bilangan-bilangan segibanyak (figurate numbers) yang lain. Salah satu sifat bilangan segitiga yang terkenal sampai sekarang disebut triple Pythagoras, yaitu : a.a + b.b = c.c yang ditemukannya melalui perhitungan luas daerah bujur sangkar yang sisi-sisinya merupakan sisi-sisi dari segitiga siku-siku dengan sisi miring (hypotenosa) adalah c, dan sisi yang lain adalah a dan b. Hasil kajian yang lain yang sangat popular sampai sekarang adalah pembedaan bilangan prima dan bilangan komposit. Bilangan prima adalah bilangan bulat positif lebih dari satu yang tidak memiliki Faktor positif kecuali 1 dan bilangan itu sendiri. Bilangan positif selain satu dan selain bilangan prima disebut bilangan komposit. Catatan sejarah menunjukkan bahwa masalah tentang bilangan prima telah menarik perhatian matematikawan selama ribuan tahun, terutama yang berkaitan dengan berapa banyaknya bilangan prima dan bagaimana rumus yang dapat digunakan untuk mencari dan membuat daftar bilangan prima.
Dengan berkembangnya sistem numerasi, berkembang pula cara atau prosedur aritmetis untuk landasan kerja, terutama untuk menjawab permasalahan umum, melalui langkah-langkah tertentu, yang jelas yang disebut dengan algoritma.
Awal dari algoritma dikerjakan oleh Euclid. Pada sekitar abad 4 S.M, Euclid mengembangkan konsep-konsep dasar geometri dan teori bilangan. Buku Euclid yang ke VII memuat suatu algoritma untuk mencari Faktor Persekutuan Terbesar dari dua bilangan bulat positif dengan menggunakan suatu teknik atau prosedur yang efisien, melalui sejumlah langkah yang terhingga. Kata algoritma berasal dari algorism. Pada zaman Euclid, istilah ini belum dikenal. Kata Algorism bersumber dari nama seorang muslim dan penulis buku terkenal pada tahun 825 M., yaitu Abu Ja’far Muhammed ibn Musa Al-Khowarizmi.
Bagian akhir dari namanya (Al-Khowarizmi), mengilhami lahirnya istilah Algorism. Istilah algoritma masuk kosakata kebanyakan orang pada saat awal revolusi komputer, yaitu akhir tahun 1950.
Pada abad ke 3 S.M., perkembangan teori bilangan ditandai oleh hasil kerja Erathosthenes, yang sekarang terkenal dengan nama Saringan Erastosthenes (The Sieve of Erastosthenes). Dalam enam abad berikutnya, Diopanthus menerbitkan buku yang bernama Arithmetika, yang membahas penyelesaian persamaan didalam bilangan bulat dan bilangan rasional, dalam bentuk lambang (bukan bentuk/bangun geometris seperti yang dikembangkan oleh Euclid). Dengan kerja bentuk lambang ini, Diopanthus disebut sebagai salah satu pendiri aljabar.
Berikut ini adalah Simbol-simbol bilangan yang ditemukan :
Bilangan Cunieform yang digunakan bangsa
Babilonia sejak tahun 5000 SM
Lambang bilangan bangsa Hindu-Arab kuno
pada abad ke-10
Lambang bilangan yang digunakan bangsa Maya
di Amerika pada tahun 500 SM
Lambang bilangan Hieroglif yang digunakan
bangsa Mesir Kuno
Lambang bilangan bangsa Arab pada abad ke-11
Lambang bilangan bangsa Yunani Kuno
Lambang bilangan bangsa Romawi
Teori Bilangan pada Masa Sejarah (Masehi)
Awal kebangkitan teori bilangan modern dipelopori oleh Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783), J.L Lagrange (1736-1813), A.M. Legendre (1752-1833), Dirichlet (1805-1859), Dedekind (1831-1916), Riemann (1826-1866), Giussepe Peano (1858-1932), Poisson (1866-1962), dan Hadamard (1865-1963).
Sebagai seorang pangeran matematika, Gauss begitu terpesona terhadap keindahan dan kecantikan teori bilangan, dan untuk melukiskannya, ia menyebut teori bilangan sebagai the queen of mathematics.
Pada masa ini, teori bilangan tidak hanya berkembang sebatas konsep, tapi juga banyak diaplikasikan dalam berbagai bidang ilmu pengetahuan dan teknologi. Hal ini dapat dilihat pada pemanfaatan konsep bilangan dalam metode kode baris, kriptografi, komputer, dan lain sebagainya.
Tokoh Teori Bilangan Legendaris
Pythagoras (582 SM - 496 SM)
Pythagoras adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya. Dikenal sebagai "Bapak Bilangan", dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM.
Salah satu peninggalan Pythagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia yang pertama kali membuktikan pengamatan ini secara matematis.
Abu Ali Hasan Ibnu Al-Haytam (965 M)
Abu Ali Hasan Ibnu Al-Haytam lahir Basrah Irak, yang oleh masyarakat Barat dikenal dengan nama Alhazen. Al-Haytam adalah orang pertama yang mengklasifikasikan semua bilangan sempurna yang genap, yaitu bilangan yang merupakan jumlah dari pembagi-pembagi sejatinya, seperti yang berbentuk 2k-1(2k-1) di mana 2k-1 adalah bilangan prima. Selanjutnya Al-Haytam membuktikan bahwa bila p adalah bilangan prima, 1+(p-1)! habis dibagi oleh p.
Sayangnya, jauh di kemudian hari, hasil ini dikenal sebagai Teorema Wilson, bukan Teorema Al-Haytam. Teorema ini disebut Teorema Wilson setelah Warring pada tahun 1770 menyatakan bahwa John Wilson telah mengumumkan hasil ini. Selain dalam bidang matematika, Al-Haytam juga dikenal baik dalam dunia fisika, yang mempelajari mekanika pergerakan dari suatu benda. Dia adalah orang pertama yang menyatakan bahwa jika suatu benda bergerak, akan bergerak terus menerus kecuali ada gaya luar yang memengaruhinya. Ini tidak lain adalah hukum gerak pertama, yang umumnya dikenal sebagai hukum Newton pertama.
Jamshid Al-Kashi (1380 M)
Al-Kashi terlahir pada 1380 di Kashan, sebuah padang pasir di sebelah utara wilayah Iran Tengah. Selama hidupnya, Al-Kashi telah menyumbangkan dan mewariskan sederet penemuan penting bagi astronomi dan matematika.
Pecahan desimal yang digunakan oleh orang-orang Cina pada zaman kuno selama berabad-abad, sebenarnya merupakan pecahan desimal yang diciptakan oleh Al-Kashi. Pecahan desimal ini merupakan salah satu karya besarnya yang memudahkan untuk menghitung aritmatika yang dia bahas dalam karyanya yang berjudul Kunci Aritmatika yang diterbitkan pada awal abad ke-15 di Samarkand.
Segitiga Pascal pertama kali diketahui dari sebuah buku karya Yang Hui yang ditulis pada tahun 1261, salah seorang ahli matematika Dinasti Sung yang termasyhur. Namun, sebenarnya segitiga tersebut telah dibahas dalam buku karya Al Kashi yang disebut dengan Segitiga Khayyam. Dan kita semua tahu bahwa ilmu di Cina dan Persia itu sudah tua. Sedangkan segitiga Pascal yang dibahas oleh Peter Apian, seorang ahli Aritmatika dari Jerman baru diterbitkan pada 1527. Sehingga bisa disimpulkan bahwa Segitiga Khayyam muncul terlebih dulu sebelum segitiga Pascal.
Pierre de Fermat
Pierre de Fermat meninggal pada tahun 1665. Dewasa ini kita mengira bahwa Fermat adalah seorang ahli teori bilangan, bahkan mungkin ahli teori bilangan yang paling terkenal yang pernah hidup. Karena itu alangkah mengejutkannya bahwa pada kenyataannya Fermat adalah seorang pengacara dan hanya seorang matematikawan amatir. Hal lain yang juga mengejutkan adalah fakta bahwa ia hanya pernah menerbitkan sekali dalam hidupnya karya dalam matematika, dan itupun ditulis tanpa nama yang disertakan dalam apendik suatu buku teks.
Karena Fermat menolak untuk menerbitkan karyanya, teman-temannya takut bahwa ia akan segera dilupakan kecuali dilakukan sesuatu. Putranya, Samuel mengambil alih pengumpulan surat Fermat dan tulisan matematika lainnya, komentar yang ditulis di buku, dan sebagainya dengan tujuan untuk menerbitkan gagasan matematika yang dimiliki ayahnya. Dengan cara inilah “Teorema Terakhir” yang terkenal diterbitkan. Hal tersebut ditemukan oleh Samuel dalam catatan kecil ayahnya dalam salinan buku Arithmetica karya Diophantus. Teorema terakhir Fermat menyatakan bahwa x^n+y^n=z^n tidak mempunyai solusi bilangan bulat tak nol untuk x, y dan z, jika n > 2.
Fermat menuliskan bahwa “I have discovered a truly remarkable proof which this margin is to small to contain”. Fermat juga hampir selalu menulis catatan kecil sejak tahun 1603, manakala ia pertama kali mempelajari Arithmetica karya Diophantus. Ada kemungkinan Fermat menyadari bahwa apa yang ia sebut sebagai remarkable proof ternyata salah, karena semua teorema yang dia nyatakan biasanya dalam bentuk tantangan yang Fermat ajukan terhadap matematikawan lain.
Meskipun kasus khusus untuk n = 3 dan n = 4 ia ajukan sebagai tantangan (dan Fermat mengetahui bukti untuk kasus ini) namun teorema umumnya tidak pernah ia sebut lagi. Pada kenyataannya karya matematika yang ditinggalkan oleh Fermat hanya satu buah pembuktian. Fermat membuktikan bahwa luas daerah segitiga siku- siku dengan sisi bilangan bulat tidak pernah merupakan bilangan kuadrat. Jelas hal ini mengatakan bahwa tidak ada segitiga siku-siku dengan sisi rasional yang mempunyai luas yang sama dengan suatu bujursangkar dengan sisi rasional. Dalam simbol, tidak terdapat bilangan bulat x, y, z dengan sehingga bilangan kuadrat. Dari sini mudah untuk mendeduksi kasus n = 4, Teorema Fermat. Penting untuk diamati bahwa dalam tahap ini yang tersisa dari pembuktian Fermat Last Theorem adalah membuktikan untuk kasus n bilangan prima ganjil. Jika terdapat bilangan bulat x, y, z dengan maka jika n = pq,.
Joseph-Louis de Langrange (25 Januari 1736 - 10 April 1813)
Joseph-Louis de Lagrange (lahir dengan nama Giuseppe Luigi Lagrangia) adalah seorang matematikawan dan astronom Perancis-Italia yang membuat sumbangan penting pada mekanika klasik, angkasa dan teori bilangan. Dilahirkan di Turin, ia adalah campuran Italia dan Perancis. Ayahnya ialah orang kaya, namun suka menghambur-hamburkan kekayaannya. Belakangan dalam hidupnya, Lagrange menyebutnya sebagai bencana yang menguntungkan karena, "jika saya mewarisi kekayaan mungkin saya tidak akan mempertaruhkan nasib saya dengan matematika”.
Berpaling pada matematika dengan membaca sebuah esai tentang kalkulus, dengan cepat ia menguasai subjek tersebut. Pada usia 19 tahun, ia memulai karyanya (mungkin yang terbesar), Mecanique analitique, meski tak diterbitkan sampai ia berusia 52 tahun. Karena tiadanya diagram yang lengkap, komposisi terpadu, William Rowan Hamilton menyebut bukunya sebagai "sajak ilmiah".
Pada saat Lagrange mengirim beberapa hasil karyanya kepada Leonhard Euler, Euler sadar akan kecemerlangan Lagrange dan menunda menerbitkan sejumlah karyanya sendiri yang berkaitan agar Lagrange-lah yang bisa menerbitkannya pertama kali (contoh langka tentang sifat seorang akademikus yang tak mementingkan diri sendiri).
Kariernya masyhur; pada usia 20 tahun ia adalah matematikawan istana pada Raja Prusia Friedrich yang Agung di Berlin dan kemudian guru besar di Ecole normale di Paris. Selama Revolusi Prancis, ia adalah favorit Marie Antoinette dan kemudian Napoleon. Di Paris, ia membantu menyempurnakan sistem metrik tentang berat dan ukuran.
Adrien-Marie Legendre (18 September 1752 . 10 Januari 1833)
Adrien-Marie Legendre ialah matematikawan Perancis. Ia membuat sumbangan penting atas statistik, teori bilangan, aljabar abstrak dan analisis matematika. Kebanyakan karyanya disempurnakan oleh ilmuwan lainnya (karyanya pada akar polinomial mengilhami teori Galois; karya Abel pada fungsi elips dibangun pada Legendre; beberapa karya Gauss dalam statistik dan teori bilangan yang melengkapi teori Legendre).
Pada tahun 1830 ia memberikan bukti pada teorema akhir Fermat untuk eksponen n = 5, yang diberikan hampir secara serentak oleh Dirichlet pada 1828. Dalam teori bilangan, ia mengkonjekturkan hukum timbal balik kuadrat, yang kemudian dibuktikan Gauss. Ia juga melakukan karya pioner pada prima, dan pada penerapan analisis pada teori bilangan. Konjekturnya dari teorema bilangan prima dengan tepat dibuktikan oleh Hadamard dan de la Vallee-Poussin pada 1898.
Johan Carl Friedrich Gauss (30 April 1777 . 23 Februari 1855)
Gauss adalah matematikawan, astronom, dan fisikawan Jerman yang memberikan beragam kontribusi. Ia dipandang sebagai salah satu matematikawan terbesar sepanjang masa selain Archimedes dan Isaac Newton. Dilahirkan di Braunschweig, Jerman, saat umurnya belum genap 3 tahun, ia telah mampu mengoreksi kesalahan daftar gaji tukang batu ayahnya. Menurut sebuah cerita, pada umur 10 tahun, ia membuat gurunya terkagum-kagum dengan memberikan rumus untuk menghitung jumlah suatu deret aritmatika berupa penghitungan deret 1+2+3+...+100. Meski cerita ini hampir sepenuhnya benar, soal yang diberikan gurunya sebenarnya lebih sulit dari itu.
Johann Peter Gustav Lejeune Dirichlet (13 Februari 1805-5 Mei 1859)
Dirichlet ialah matematikawan Jerman yang dihargai karena definisi "formal" modern dari fungsi. Keluarganya berasal dari kota Richelet di Belgia, dari yang nama belakangnya "Lejeune Dirichlet" ("le jeune de Richelet" = "anak muda dari Richelet") diturunkan, dan di mana kakeknya tinggal.
Dirichlet lahir di Duren, di mana ayahnya merupakan kepala kantor pos. Ia mendapatkan pendidikan di Jerman, dan kemudian Prancis, di mana ia belajar dari banyak matematikawan terkemuka saat itu. Karya pertamanya ialah pada teorema akhir Fermat. Inilah konjektur terkenal (kini terbukti) yang menyatakan bahwa untuk n>2, untuk persamaan x^n+y^n=z^n tak memiliki solusi bilangan bulat, selain daripada yang trivial yang mana x,y,atau z itu 0. Ia membuat bukti parsial untuk kasus n = 5, yang dilengkapi oleh Adrien-Marie Legendre.
Dirichlet juga melengkapi pembuktiannya sendiri hampir di saat yang sama; kemudian ia juga menciptakan bukti penuh untuk kasus n = 14. Setelah kematiannya, ceramah Dirichlet dan hasil lain dalam teori bilangan dikumpulkan, disunting dan diterbitkan oleh kawannya dan matematikawan Richard Dedekind dengan judul Vorlesungen uber Zahlentheorie (Ceramah pada Teori Bilangan).
Benjamin Peirce (4 April 1809 . 6 Oktober 1880)
Benjamin Peirce ialah seorang matematikawan Amerika yang mengajar di Universitas Harvard selama kira-kira 50 tahun. Dia bersumbangsih dalam bidang mekanika benda langit, teori bilangan, aljabar, dan filsafat matematika. Setelah tamat dari Harvard, dia menjadi seorang asisten dosen (1829), dan kemudian diangkat menjadi dosen matematika pada 1831.
Di dalam teori bilangan, dia membuktikan bahwa tidak ada bilangan sempurna ganjil yang kurang dari empat faktor prima. Di dalam aljabar, dia dikenal atas pengkajiannya pada aljabar asosiatif. Dia pertama mengajukan istilah idempoten dan nilpoten pada 1870 untuk menjelaskan unsur-unsur aljabar ini, dan dia juga memperkenalkan penguraian peirce.
Pengikut
Mengenai Saya
Search
Link Terkait
Popular Posts
-
BAB I PENDAHULUAN A. Ruang Lingkup Pembahasan Pada dasarnya kehidupan manusia selama ini tidak bisa terlepas dari yang namanya ...
-
Latihan soal IPA Materi: Struktur dan Fungsi Makhluk Hidup Pilihlah jawaban yang benar! Javasript tidak mendukung atau tidak aktif...
-
Dalam pelaksanaan kegiatan ujian, tentunya rekan-rekan guru perlu mempersiapkan Administrasi yang lengkap agar kegiatan tersebut dapat ber...
Blog Archive
- Maret 2021 (5)
- Januari 2021 (2)
- Oktober 2020 (4)
- September 2020 (9)


0 komentar:
Posting Komentar